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1. Introduction

In recent years quite a number of tests were performed to check the AdS/CFT correspon-

dence. Most of these tests involved matching the anomalous dimension of certain operators

in the gauge theory to the energy of a corresponding closed string in AdS5 × S5. Other

possible way to check the correspondence is to compare the expectation values of Wilson

loops in the gauge theory to the minimal area of a string solution ending in the loop.

In [1] it was conjectured that the expectation value of the circular Wilson loop in planar

N = 4 SUSY gauge theory can be obtained exactly to all orders in perturbation theory by

summing all rainbow diagrams. Also, it has been observed that the computation may be

expressed in terms of a Gaussian matrix model. This conjecture was checked at one loop

in the gauge theory perturbative expansion in [1] and at two loops in [2, 3].

The Gaussian matrix model was generalized further in [4] to obtain the expectation

value of the circular Wilson loop to all orders in the 1/N expansion and all orders in

λ = g2N . Here g2 is the gauge theory coupling parameter which is related to the string

coupling by 4πgs = g2. Very recently, it was shown in [5] that the direct gauge theory

computation to all orders precisely matches the matrix model computation performed

in [4]. The gauge theory prediction at all orders in 1/N was tested [4] against the leading

result at strong coupling in
√
λ from string theory, and perfect matching was found. In

this paper we test the gauge theory prediction for the circular Wilson loop in the planar

approximation, at the next order in the large-λ expansion by comparing it to the one loop

correction to the partition function for the corresponding string solution.
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Let us recall the expectation value of the circular Wilson loop at N = ∞ and all orders

in λ as it was obtained in [1, 4]

< W >=
2√
λ
I1(

√
λ) (1.1)

where I1 is a Bessel function. Expanding this for large λ we obtain

ln < W >=
√
λ− 3

4
lnλ+

1

2
ln

2

π
− 3

8

1√
λ

+ . . . (1.2)

The AdS/CFT correspondence relates the expectation value of circular Wilson loop to

the string partition function for the corresponding string solution, i.e. < W >= Z. The

logarithm of the string partition function can be written as

lnZ = −Γ0 − Γ1 + . . . (1.3)

where Γ0 is the classical effective action, which is proportional to the area of the world-sheet,

Γ1 is the 1-loop correction to the effective action, and so on. Here we compute the string

1-loop correction to the action by computing the string 2d effective action, Γ1 = − lnZ. We

want then to compare the string result to the expected expression from the gauge theory

Wilson loop (1.2).

It was shown in [4] that the lnλ factor comes from the normalization of the zero

modes in the string partition function. The numerical factor 1
2 ln 2

π should come from the

correct overall measure factor in the string partition function, and the contribution from

the fluctuations of the sigma model near the corresponding string solution.

To determine the correct overall constant factor in the measure coming from the nor-

malization of ghost zero modes1 is difficult and it could be that can only be done by

comparison with the gauge theory. However, it should be noted that it depends only on

the topology of the world-sheet and, in particular, it is independent of the shape of the

Wilson loop. On the other hand, the dependence on the shape is in the contribution from

the 2d sigma model fluctuation determinants which we compute here. It would be interest-

ing to consider other closed loops since the ratio between their expectation values should

be independent of the zero mode normalization. In particular one can consider the string

solutions corresponding to the circular 1/4 BPS loops that were constructed in [6].

In the previously studied 1-loop fluctuation determinants for the open string solution

dual to the cusp Wilson loop [7] or closed string solutions [8 – 11], the fluctuation Lagrangian

had constant coefficients and one was able to find the spectrum of fluctuations easily. It

turns out that the fluctuation Lagrangian near the string solution dual to the circular

Wilson loop has non-constant coefficients. As we see below, this is the case even near the

simple straight string solution. Finding the spectra of the corresponding operators becomes

a nontrivial task. Both the straight string and circular string were discussed in [12]. The

extension to the parallel lines solution was discussed in [12, 13], and a supersymmetric

extension of the circular Wilson loop was discussed in [14]. Fluctuations near these open

1No zero modes arise from bosonic and fermionic fluctuations.
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string solutions were discussed in [12 – 14]. However, there were no attempts to explicitly

compute the functional determinants and therefore obtain explicit results for the 1-loop

partition functions for these solutions.

It is the purpose of this paper to compute the 1-loop effective action for the straight

and circular Wilson loop string solutions. One motivation is the computation in itself of

the 1-loop fluctuation determinants for such cases where the fluctuation Lagrangian has

non-constant coefficients. Another motivation in the particular case of the circular Wilson

loop is the comparison to the gauge theory expectation in (1.2).

The open string computations in these cases present extra challenges due to the pres-

ence of the linear divergency expected at the boundary. It was shown in [15] that at the

classical level the linearly divergent term is proportional to the length of the Wilson loop.

To get rid of the IR linear divergent2 term at the classical level, one may just subtract

all terms proportional to 1
ǫ , where ǫ is a IR worldsheet cutoff. This prescription could be

extended also at the 1-loop level. However, a better and less ambiguous way to treat the

ǫ→ 0 divergency is to subtract a reference solution so that the divergency cancels. As we

see in this paper, this is a consistent method at the classical level and 1-loop. Although

we do not go beyond 1-loop here, it is likely that this method of subtracting a reference

solution is consistent also at higher loops (at strong coupling). In this paper the reference

solution is the straight string, whose value is subtracted from the circular Wilson loop

producing a finite result.

For the computation of the ratios of determinants that appear in the 1-loop correc-

tion we employ a method put forward long ago in [16], which was developed and improved

recently in a series of papers [17 – 19]. The method was used before in field theory computa-

tions [20 – 22]; for a recent review of those computations see also [23]. In short the method

says that the ratio of two one-dimensional determinants is the ratio of the respective (non-

normalizable) wave-functions corresponding to the zero eigenvalue of the operators and

evaluated at the boundary. We present a review of this method in appendix A. In order

to use this method the two-dimensional spectral problems involved must be separable into

one-dimensional ones. Then the only remaining problem for an arbitrary such string so-

lution is to find the solutions of the relevant one dimensional differential equations, which

even when they cannot be solved exactly, might be computed using numerical methods.

An interesting further application of this method is in the case of the two parallel lines [12].

The Wilson loop can be extended to have a winding number k along the circle. It was

conjectured in [24], and directly proved in [5] that the gauge theory partition function is

< W >k=
2

k
√
λ
I1(k

√
λ) (1.4)

This is the same as the expression for winding k = 1, (1.1) with the replacement λ→ k2λ.

The expansion of the logarithm of this partition function at large λ is

ln < W >k= k
√
λ− 3

4
lnλ− 3

2
ln k +

1

2
ln

2

π
− 3

8k

1√
λ

+ . . . (1.5)

2From the field theory point of view this is a UV divergence.
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One would like to compare (1.5) to the corresponding dual string solution. However, a

technical complication appears in the case k 6= 1. The dual string solution in this case

has a worldsheet surface whose boundary winds around the circle k-times. Such surface

wraps k times the surface corresponding to k = 1 but topologically is still a disk with Euler

number equal to 1. As a result there is a conical singularity at the center of the disk.

We extend the k = 1 computation of the 1-loop effective action to the case with

arbitrary k. In our method of computing the determinants we effectively cut the origin

of the disk,3 compute the determinants and then analytically extend the computation to

the whole disk including the origin. While this procedure is not problematic for k = 1, for

arbitrary k it might miss a relevant contribution from the conical singularity. With this

caveat, we can compare our result with (1.5). We will see that it does not agree so the

understanding of the k 6= 1 case remains an interesting problem which needs to be clarified.

Let us mention that a further very useful comparison between the gauge theory predic-

tion at strong coupling (1.2) and string string theory is at two loops in strong coupling. In

that case one does not need to know the precise numerical coefficient from the zero modes.

However, while such two loop computations were performed recently [25, 26] for homoge-

nous solutions, it seems hard to do such a computation in the non-homogenous cases such

as the Wilson circular loop solution. Nevertheless, such a 2-loop computation would be

very interesting to perform as it would be a further very useful check of the AdS/CFT

correspondence.

We start below by reviewing the straight string solution and computing the 1-loop

correction to the effective action using the ratio of determinants method. We then com-

pute the 1-loop effective action for the circular Wilson loop solution. We generalize this

computation also to an arbitrary winding number k. In appendix A we present in some

detail the method of computing ratios of determinants employed in this paper, and a simple

application of the method to free massive fields.

2. Straight string solution

The 1-loop correction to the partition function of the straight string solution in AdS5 ×S5

was considered in [12]. In what follows we work in conformal gauge with
√
ggij = δij and

use the Polyakov action. The straight string solution is

x0 = τ, z = σ (2.1)

with the AdS5 metric being

ds2 =
1

z2
(dx2

0 + dx2
1 + dx2

2 + dx2
3 + dz2) (2.2)

As the radial coordinate z runs from the boundary of AdS5 to its horizon, the worldsheet

coordinate σ takes values in the interval 0 ≤ σ < ∞. We periodically identify x0 in the

interval 0 ≤ x0 ≤ 2πT , where T is taken to be large (i.e. 0 ≤ τ ≤ 2πT ). The minimal

surface for this string solution is a half plane extended along the x0 line and z ≥ 0.

3We put Dirichlet boundary conditions at the new boundary.
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The induced metric on this solution is that of AdS2

ds22 =
1

σ2
(dτ2 + dσ2) (2.3)

while the corresponding 2d curvature R(2) = −2. The classical value of the action corre-

sponding to this string solution is

S =
√
λ
T

ǫ
(2.4)

where, as in [15], we introduced a cutoff, ǫ, near the boundary of AdS.

Let us observe that the action obtained in (2.4) is just proportional to the volume part

of the Euler characteristic, i.e

S = −
√
λχv, χv =

1

4π

∫

M
d2σ

√
gR(2) = −T

ǫ
, χb =

1

2π

∫

∂M
dsκg =

T

ǫ
(2.5)

where we denoted by χv and χb the volume and boundary parts of the Euler number, while

M is a general 2d surface. This is not a specific feature of the straight string but it rather

happens also for the circular string and other situations in general that have constant 2d

curvature. At 1-loop level, the UV divergency also turns out to be proportional to the

volume part of the Euler number.

At the classical level one way to get rid of the linear divergency is to consider a Legendre

transform [15, 27]. In terms of Euler characteristic this amounts to include its boundary

term, so that the finite action is just [12, 4]

S = −
√
λχ, χ = χv + χb (2.6)

This action is zero for the half-plane, because χ = 0 for a half plane. As it should, the

boundary term in the Euler number cancels the volume term. More generically for any

smooth loop, the boundary term in the Euler number will always be singular and propor-

tional to the length of the Wilson loop L
ǫ (L is the length of the loop). The completion of

the Euler number appears to provide a natural way to regularize the classical result.4

For completness, let us mention that in [15, 27] another method of regularizing the

area was proposed. Essentially, it consists in taking the Legendre transform of the action.

More precisely, one adds to the Lagrangian a total derivative,

L̃ = L+ ∂σ[z
∂L

∂(∂σz)
] (2.7)

such that the new action becomes

S̃ = S − ǫ

∫

dτ
∂L

∂(∂σz)

∣

∣

∣

∣

z=ǫ

(2.8)

where S is the original Polyakov action and τ denotes the boundary coordinate. Through-

out this paper we consider the boundary to be at some small but finite cutoff z = ǫ. In the

case of the straight string using ∂L
∂(∂σz)

=
√
λ

2π
∂σz
z2 , the transformed action is

S̃ = S −
√
λ
T

ǫ
(2.9)

4At 1-loop, however, this simple procedure seems not to be enough, which is why we choose to regularize

by subtracting a reference solution.
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Indeed the last term cancels the linearly divergent term in (2.4) making the action finite.

3. Straight string: one loop correction to the effective action

We want to compute the one loop correction to the effective action for the straight string.

This was done in [12] by an indirect method using the results of [28]. However, divergencies

were present and ζ function regularization was used to show that the 1-loop correction to

the effective action is zero. Here we do this computation by directly dealing with the

determinants that appear in the partition function. To do this, one needs the spectra of

quadratic bosonic and fermionic fluctuations near the solution. The general expressions of

the bosonic and fermionic fluctuation operators have been computed in [12]. Let us start

by reviewing the bosonic fluctuation action near any classical solution. Introducing the

tangent-space components of fluctuations as

xµ → x̄µ + ξµ, ζA = EAµ ξ
µ, A = 0, 1, . . . 9 (3.1)

as well as fluctuations near a background metric

gij → gij + χij (3.2)

one obtains the following quadratic action in conformal gauge [12]

S =

√
λ

4π

∫

d2σ
√
g

[

gijDiζ
aDjζ

a +Xabζ
aζb + gijDiζ

pDjζ
p +Xpqζ

pζq
]

(3.3)

Xab = −gijeciedjRabcd,
Xpq = −gijeri esjRpqrs

where the indices a, b = 0, 1, 2, 3, 4 refer to the AdS5 space while p, q = 5, 6, 7, 8, 9 to the

sphere S5. Also, here

eai = Eaµ∂ix̄
µ, epi = Epµ∂ix̄

µ (3.4)

are the projections of the AdS5 and S5 vielbeins on the worldsheet. Di is the covariant

derivative containing the projection of the target space spin connection on the worldsheet

Diζ
a = ∂iζ

a + ∂ix̄
µΩab

µ ζ
b (3.5)

The fluctuation fields have canonical norms

‖ζa‖2 =

∫

d2σ
√
gζaζa, ‖ζp‖2 =

∫

d2σ
√
gζpζp (3.6)

For the metric (2.2) the projections of vielbeins and spin connection are

eai =

(

1

z
∂ix0,

1

z
∂ix1,

1

z
∂ix2,

1

z
∂ix3,

1

z
∂iz

)

Ωα
i4 = −1

z
∂ixα, α = 0, 1, 2, 3 (3.7)

– 6 –
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The bosonic ghost action for the 2d vectors is [12]

Sgh =

√
λ

4π

∫

d2σ
√
ggij

(

gkl∇kǫi∇lǫj −
1

2
R(2)ǫiǫj

)

(3.8)

where ∇ includes the worldsheet connection.

In general, due to the Weyl symmetry, the classical value of the metric can be taken

to differ from the induced metric, hij, by an arbitrary conformal factor ρ, gij = e2ρhij .

The bosonic fluctuation Lagrangian (3.4) was obtained assuming an arbitrary background

metric gij , but, in order to proceed with the computation, we need to choose a specific

metric gij. Two obvious possibilities are the induced metric and the flat metric. Certainly,

the physical finite part of the result should not depend on the background metric used.

Let us now consider the benefits of each choice.

As argued in [12], in the Green-Schwarz (GS) formulation, at 1-loop in AdS5 × S5,

the logarithmic divergencies can be shown to cancel by the same argument used in flat

space GS action. The overall factor from the measure in the partition function has a

logarithmic UV divergency that depends on the Euler characteristic [29, 30, 12], e−3χ ln Λ,

(where Λ is a dimensionless large cutoff), which comes from the cutoff dependent factors

in the conformal Killing vectors and/or Teichmuller deformations, as a result of fixing the

world-sheet reparametrization symmetry and the Weyl symmetry.5 As it was shown in the

general case in [12], this divergency is canceled by the logarithmic divergence of the one

loop determinants. How precisely, this UV divergency is canceled by the contribution from

the 1-loop fluctuation determinants is rather subtle.

There are two sources of UV divergency from the 1-loop determinants: one that is

proportional to the curvature R(2) of the background metric gij , and the other one comes

from the background field. In the case when gij is the induced metric the cancelation of

UV divergency is rather obscure as the divergencies coming from the two sources mix. The

overall result from the one loop determinants may not be zero, and it is canceled by the

one from the measure. To obtain this cancelation one needs to consider another subtle fact

pointed out in [12]. In GS formulation the quadratic fermionic Lagrangian can be brought

after rotations and field redefinitions in a form similar to eight 2d fermions. However, the

norm of this actually GS fermions is different from true 2d fermions. To change the norm

of a 2d fermion into the norm of a GS fermion one needs a local determinant, which brings

a factor of four into the curvature,
∫

R(2), part of the UV divergency. In other words a GS

fermion contributes four times more to the topological (
∫

R(2)) UV divergency than a 2d-

fermion. This appears already in the GS string in flat space. In this paper it is convenient

for the practical purpose to take the fermionic determinant as that of 2d determinants.

For the solely purpose of practical computation of the finite part of the 1-loop correction,

we will not be concerned about this local determinant, as UV divergency cancelation was

shown already in general in [12].

In the case when gij is the induced metric, the UV divergency,
∫

R(2), may not be zero,

and so may be the divergency coming from the background fields. Even though in this case

5The κ symmetry ghosts after fixing the κ symmetry does not give a logarithmic UV divergency.

– 7 –



J
H
E
P
0
5
(
2
0
0
8
)
0
6
4

the result from the 1-loop fluctuation determinants is not UV finite by itself, this choice of

gij being the induced metric, as in [12, 13], appears to be the best choice for the case of open

strings with boundaries, and also for our method of computing functional determinants.

Thus, we will fix the background metric gij to be the induced metric throughout this paper.

When one chooses gij flat, the UV divergency coming from
∫

R(2) is zero, while the

one coming from the background field cancels between bosons and fermions [12]. In this

case, assuming also that one can ignore the boundary terms, the contribution from the

1-loop determinants to the UV divergency should vanish by itself, so one expects that the

contribution from the one loop fluctuation determinants will be UV finite. This is indeed

the case as we have checked using the computation of ratio of determinants employed in

this paper. It turns out that within our method of computing the functional determinants,

the choice of flat gij is more cumbersome since it leads to complicated longitudinal mode

fluctuation operators and issues with the appropriate boundary conditions for them. Com-

plications from the proper choice of boundary conditions seems to appear in the case of

circular string.

After the general discussion about the cancelation of UV divergency let us return to

the case of the straight string. As we pointed out we take gij to be the induced metric.

The only non-trivial covariant derivatives are

D0ζ
0 = ∂0ζ

0 − 1

σ
ζ4, D0ζ

4 = ∂0ζ
4 +

1

σ
ζ0 (3.9)

while the mass matrix is Xab = diag(1, 2, 2, 2, 1) and Xpq = 0. One can show [12] that

the ghost action is identical to the action of the longitudinal modes ζ0, ζ4 so, in the par-

tition function their contributions cancel each other. The remaining transverse bosonic

fluctuations have all masses squared equal to 2. From the sphere fluctuations one obtains

5 massless modes. The quadratic transverse fluctuation action is

S =

√
λ

4π

∫

dτdσ
1

σ2

[

σ2∂iζ
A∂jζ

A + 2(ζ1)2 + 2(ζ2)2 + 2(ζ3)2
]

(3.10)

where here A = 1, 2, 3, 5, 6, 7, 8, 9, i.e. the longitudinal bosonic fluctuations corresponding

to directions ζ0, ζ4 are excluded. Therefore, the resulting spectral problem one needs to

solve is

Lf = Λf, L = σ2(−∂2
0 − ∂2

1) + 2 (3.11)

and the same problem but with mass equal to zero for the sphere fluctuations. Since

we want to compare the results between straight and circular string solutions we choose

periodic boundary condition in τ . In σ we choose Dirichlet boundary conditions. Using

the expansion f(τ, σ) =
∑

n gn(σ)eimτ with m = n
T (recall that 0 ≤ τ < 2πT ) where n is

an integer number, we obtain the spectral problem to be solved for each m

σ2(−g′′ +m2g) + 2g = Λg (3.12)

To obtain the determinant of L one needs to take a product over m

detL =
∏

m

det

(

σ2(−∂2
1 +m2) + 2

)

(3.13)

– 8 –
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Since T is taken to be large, as appropriate for the straight string, we replace at the end

the sum over m by an integral which gives the dominant term in the T → ∞ limit. Before

considering solving this problem let us see first what operator comes out from the fermionic

Lagrangian.

Let us now consider the fermionic contributions. Before fixing κ symmetry the

fermionic Lagrangian is

SF =

√
λ

2π

∫

d2σL2F , L2F = −i(√ggijδIJ − ǫijsIJ)θ̄IρiDjθ
J (3.14)

where the spinors θ1 and θ2 are 16-component real Majorana-Weyl fermions of the same

chirality, and

ρi = ΓAe
A
i (3.15)

Diθ
I = δIJ∇i −

1

2
iǫIJρiθ

J , ∇i = ∂i +
1

4
ΩAB
i ΓAB (3.16)

Following [12] we fix κ symmetry by taking θ1 = θ2 and the fermionic Lagrangian becomes

L2F = −2i
√
ggij θ̄ρi∇jθ + ǫij θ̄ρiρjθ (3.17)

Let us mention that upon fixing κ symmetry, κ symmetry ghosts arise. However, their

contribution does not give a logarithmic divergency; only power divergent terms and pos-

sibly a finite part appear. In dimensional regularization the net contribution from the κ

symmetry ghosts is zero. With a cutoff regularization, power divergencies should cancel

those coming from the conformal Killing vectors/Teichmuller spaces, while any remaining

finite part contributes to the overall numerical coefficient in the string partition function,

which we do not fix in this paper.

The quadratic GS fermionic action (3.17) has exactly the same form as the action for

2d fermions in curved 2d space. As in [12] here we use Minkowski metric, and at the end

we will switch back by taking ∂0 → i∂0. Also, we take the background metric to be the

induced metric like in the bosonic case.

In the case of the straight string one obtains [12]

∇0 = ∂0 −
1

2σ
Γ04, ∇1 = ∂1, ρ0 =

1

σ
Γ0, ρ1 =

1

σ
Γ4 (3.18)

The fermionic Lagrangian is

L2F = −2i
√
gθ̄DF θ (3.19)

where

DF = −σΓ0∂0 + σΓ4∂1 −
1

2
Γ4 + iΓ0Γ4 (3.20)

We assume the standard normalization of fermions ‖θ‖2 =
∫

d2σ
√
gθ̄θ. The matrices

Γ0,Γ4 play the role of worldsheet 2d Dirac matrices, since we can choose the following

representation Γ0 = iσ2 × I8,Γ4 = σ1 × I8, where σ1,2 are Pauli matrices. Squaring the

above fermionic operator or computing its determinant using the above gamma matrix

– 9 –
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representation, one obtains the spectral problem to be solved. One then ends up with the

following spectral problem for the fermions

LF θ = Λθ (3.21)

where the 2 × 2 operator is

LF = −∇i∇i +
R(2)

4
+ 1 (3.22)

= σ2(−∂2
1 +m2) +

3

4
+ Γ04mσ

As in the bosonic sector, we again took the τ part of the solution of the form eimτ , with

m = n
T . Since Γ04 is diagonal with elements 1 and −1, the determinant of LF is a product

of two one dimensional determinants.

Putting together the bosons and fermions one ends up with the following 1-loop par-

tition function [12]6

Z =
det8/2(−∇2 + R(2)

4 + 1)

det3/2(−∇2 + 2)det5/2(−∇2)
(3.23)

where Laplace operators in curved space are ∇2 = 1√
g∇i(

√
ggij∇j). More precisely, taking

g the induced metric and R(2) = −2 we obtain

Z =
∏

m

det4/2[σ2(−∂2
1 +m2) + 3

4 +mσ] det4/2[σ2(−∂2
1 +m2) + 3

4 −mσ]

det3/2[σ2(−∂2
1 +m2) + 2] det5/2[σ2(−∂2

1 +m2)]
(3.24)

The computation of each of these determinants is difficult in general as they are infinite

and one has to deal with divergencies. Here we employ a method of computing ratio of

determinants which gives a finite result for each particular ratio. We review this method in

the appendix A. Let us just summarize here the method. The ratio of the determinants of

two second-order differential operators M1,M2 defined on the interval [0,∞), and satisfying

Dirichlet boundary conditions can be computed as follows [16, 31, 17]

det(M1)

det(M2)
= lim

R→∞
ψ1(R)

ψ2(R)
(3.25)

where ψi satisfy the initial value problems

Miψi = 0, ψ(0) = 0, ψ′(0) = 1 (3.26)

The operators M1,M2 are of the form

Mi = − d2

dx2
+ Vi(x), i = 1, 2 (3.27)

6This expression for the partition function can also be obtained by starting with the Nambu action and

fixing the fluctuations of the two longitudinal fields to zero [12]. There is no ghost Lagrangian in the Nambu

method, and the overall measure factor is computed differently than in conformal gauge. In any case, in

this paper we only compute the contribution from the fluctuation determinants.
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We want to apply this method to compute the ratio of determinants as they appear

in (3.23). As shown in appendix A (A.6), the ratio of determinants with rescaled operators

is the same as the ratio with the coefficient of second order derivative not rescaled to 1

because the initial value problems (3.26) are the same. From now on for convenience when

we compute the initial value solutions we always consider the operators with g00 scaled

away; again ratio of determinants are the same with g00 scaled away or not. It was shown

in [32] that in curved spaces the 1-loop correction to the vacuum energy can be computed

from the determinants that have the factor g00 in front of ∂2
0 scaled away. Thus in our

case we conclude that the 1-loop correction to the vacuum energy is like in flat space, i.e.

given by E1 ∼ − lnZ. This was also shown in [12] by directly using the expansion of

determinants defined through heat kernel.

An important fact in computing the ratio of determinants that appears in (3.24) is

the presence of a singularity at σ = 0. The initial value problem contains a singularity at

the boundary σ = 0. This is a complication as we would like to get a finite result in the

physical interval [0, R]. However, we expect such a complication to arise since it is already

present at the classical level. At the classical level the prescription was to add a boundary

term, or, equivalently, to complete the Euler number. It is not clear what mechanism one

is to use at the 1-loop level to subtract this divergence. Below we will take the interval for

σ to be [ǫ,R], and in order to get rid of the 1
ǫ divergency we subtract the results of two

different solutions, i.e. straight and circular string solutions.

Before computing the determinants in (3.24) with the method reviewed above, let us

mention that we are computing the GS fermionic determinants in (3.24) as if they were

2d fermions and not GS fermions. As discussed already, the difference between the two

come only from the different norm, which translates into a local determinants that does

not affect the finite part of the result.

Let us write the 1-loop effective action as

Γ1 =
1

2
ln

∏

m

Pm (3.28)

where m = n
T , n being an integer number, and

Pm =

[

det
[

− ∂2
1 +m2 + 2

σ2

]

]3[

det
[

− ∂2
1 +m2

]

]5

[

det
[

− ∂2
1 +m2 + 3

4σ2 + m
σ

]4[

det
[

− ∂2
1 +m2 + 3

4σ2 − m
σ

]4 (3.29)

In view of the symmetry m → −m, we restrict to the m ≥ 0 case. We keep m in all

formulas, and only at the end replace it in terms of n. In fact, since T is large one can

replace the sum over n by an integral.

The next step is to compute the ratio of the above determinants using (3.25). As we

already pointed out, we take Dirichlet boundary conditions in σ and compute the ratios

of determinants in the interval σ ∈ [ǫ,R] with R large. At the end, we take the R → ∞
limit. The introduction of a large but finite R effectively introduces another boundary for

the worldsheet. This boundary, however, is un-physical and, in fact, all R dependence goes
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away at the end. Besides, the boundary part of the Euler number corresponding to this

additional boundary vanishes when R→ ∞, thus, this extra boundary has no effect on the

Euler number.

As in the classical area we expect a linear divergency near the boundary of AdS; so, to

account for this we again considered a small cutoff ǫ. Only at the very end in the expression

of the 1-loop energy we take the limit ǫ → 0. We need to solve the following initial value

problems

−g′′ +
(

m2 +
2

σ2

)

g = 0 (3.30)

with the initial conditions

g(ǫ) = 0, (3.31)

g′(ǫ) = 1

The solution is

g(σ) =
1

m3ǫσ

[

m(σ − ǫ) coshm(σ − ǫ) − (1 − ǫm2σ) sinhm(σ − ǫ)

]

(3.32)

We also need to solve
[

− ∂2
1 +m2 +

3

4σ2
+
m

σ

]

θ = 0 (3.33)

whose solution is

θ(σ) =
1

4m2
√
ǫσ

[

(2mσ − 1)em(σ−ǫ) − (2mǫ− 1)e−m(σ−ǫ)
]

(3.34)

Lastly for the free bosons we need

−g′′ +m2g = 0 (3.35)

with solution

g =
1

m
sinhm(σ − ǫ) (3.36)

Taking the large σ limit of these solutions we obtain the following finite ratios of

determinants

det[−∂2
1 +m2 + 2

σ2 ]

det[−∂2
1 +m2 + 3

4σ2 + m
σ ]

=
mǫ+ 1

m
√
ǫR

,

det[−∂2
1 +m2]

det[−∂2
1 +m2 + 3

4σ2 + m
σ ]

=

√

ǫ

R
(3.37)

det[−∂2
1 +m2]

det[−∂2
1 +m2 + 3

4σ2 − m
σ ]

=
2m

√
Rǫ

2mǫ+ 1
(3.38)

These formulas are valid in the large R limit but we have been careful not to take R > m,

as m can be large in the sum.
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Putting the ratios together we obtain

ln
∞
∏

m6=0

Pm =
∑

m6=0

ln

[

16mǫ(1 +mǫ)3

(1 + 2mǫ)4

]

(3.39)

It is interesting and crucial that in the above final formula, the R dependence cancels,

therefore taking the limit R→ ∞ gives a finite result. Note that for generic determinants

this is not always true, here it is a reflection of the fact that the boundary at σ = R is

unphysical.

As we already pointed out, with periodic boundary conditions on τ , m = n
T , and in

the large T limit one should replace the sum over n by an integral.7 Therefore the 1-loop

effective action is

Γ1 =

∫ ∞

0
dn ln

[

n(n+ T
ǫ )

3

(n+ T
2ǫ)

4

]

(3.40)

This integral is UV logarithmically divergent as we expect since the volume part of the Euler

characteristic is not zero when gij is the induced metric. Introducing a large dimensionless

cutoff, Λ, in the summation indices we obtain.

Γ1 =

∫ Λ

0
dn ln

n(n+ T
ǫ )3

(n+ T
2ǫ)

4
=
T

ǫ

(

1 + ln
ǫ

4T

)

+
T

ǫ
ln Λ (3.41)

The UV divergent part of Γ1 is proportional to the volume part of the Euler charac-

teristic

Γ1 → −χv lnΛ, χv =
1

4π

∫ 2πT

0
dτ

∫ ∞

ǫ
dσ

√
gR(2) = −T

ǫ
(3.42)

where in this computation gij is the induced metric ds2 = 1
σ2 (dτ2 + dσ2), and R(2) = −2.

As discussed already, we have used 2d fermions in the computation of the determinants

so we do not expect precise UV divergency cancelation between this result and the one

from the measure factors. Using the Seeley coefficients obtained from the expansion of

the heat kernel expression of functional determinants, we checked that the UV divergency

we obtain using the ratio of determinant method indeed gives the same result.8 At the

7The same result is obtained by doing the sum first and then keeping the leading terms in large T .
8For a bosonic operator −∇2 + X, the volume part of the Seeley coefficient is [12]

b2 = −R(2)

6
+ X (3.43)

while for a 2d Majorana fermion with squared Dirac operator −∇2 + Y , it is

b2 =
R(2)

12
+ Y (3.44)

We have eight transverse bosons, with total mass 6, and eight 2d fermions each with mass squared equal

to 1. The total Seeley coefficient in the partition function is then (R(2) = −2 in our cases)

8
R(2)

12
+ 8 + 8

R(2)

6
− 6 = 2R

(2) + 2 = −2 (3.45)

The UV divergent part in the logarithm of the partition function is given by

1

2

1

4π
lnΛ2

Z

d
2
σ
√

g(−2) = χv ln Λ (3.46)
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classical level we added a boundary term to complete the Euler number. Boundary terms

are always 1
ǫ type terms. While we do not have a precise mechanism at 1-loop to regularize

the 1
ǫ divergency we again should add a term to complete the Euler number, so the UV

divergency is −χ ln Λ.

The final result (3.41) is still divergent in the limit ǫ → 0. However, since we know

that the straight string is BPS, the correct result is zero, namely

Z = 1 (3.48)

Therefore in this case the correct prescription is to subtract the IR divergence. This

becomes clearer when computing the circular Wilson loop in the next section. We will

then see that the IR divergence is exactly the same and therefore the same subtraction

regularizes both cases.

4. Circular Wilson loop

First, let us review the string solution dual to the circular Wilson loop [15, 33]. We start

with the string Nambu action

S =

√
λ

2π

∫

dσdτ

√

−(ẊX ′)2 + (Ẋ)2(X ′)2 (4.1)

In what follows we use the AdS Euclidian metric in Poicare coordinates

ds2 =
1

z2
(dr2 + r2dφ2 + dz2 + dx2

i ) + dΩ2
5 (4.2)

The open string solution corresponding to the circular Wilson loop is

z =
√

a2 − r2, 0 ≤ r ≤ a, 0 ≤ φ < 2π (4.3)

where the radius of the circle at the boundary of AdS is denoted by a. Note that one may

rescale away this radius and set it to 1, but we keep it arbitrary to check that the physical

results do not depend on it. One can translate this solution into embedding coordinates

and then in global coordinates in Minkowski AdS5. The minimal surface ends up on a

circle at the boundary of AdS5 and is diffeomorphic to a disk.

The computation of the area of this solution gives a divergent quantity. One way to

regularize it is to introduce a cutoff ǫ near the boundary [15], i.e. setting the boundary at

The UV divergence of the 1-loop effective action is then Γdiv
1 = −χv lnΛ. This is the same as what we

obtained by using the ratio of determinants method. For completeness, let us recall the counting when

instead of a 2d fermions one has a GS fermion (divergency from
R

R(2) has an additional factor of 4)

4 × 8
R(2)

12
+ 8 + 8

R(2)

6
− 6 = 4R

(2) + 2 = −6 = 3R
(2) (3.47)

This gives a UV divergency 3χv lnΛ in ln Z, which (after adding a corresponding boundary term) indeed

cancels the corresponding divergency from the measure.
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z = ǫ, or equivalently setting the maximum value of r to be
√
a2 − ǫ2. Parametrizing the

surface using the coordinates r, φ one obtains

S =

√
λ

2π

∫

√
a2−ǫ2

0
dr

∫ 2π

0
dφ

r

z2

√

1 + z′2 = −
√
λ+

√
λ
a

ǫ
(4.4)

The standard procedure as discussed in [15] is to set all linear divergencies to zero, so that

area is just

S = −
√
λ (4.5)

In term of the full Euler number (2.6) one also obtains the regularized area (4.5) since

the Euler number χ for a disk is one. The volume and boundary parts of the Euler number

in this case are

χv = 1 − a

ǫ
χb =

a

ǫ
(4.6)

The area in (4.4) is proportional to the volume part of the Euler number. As in the case of

the straight string, the natural way to regularize the area is to complete the Euler number

by adding a boundary part.

As expected, we see that the physical area (4.5) is indeed independent of the radius

of the circle. If we now compare the divergent part of the area in (4.4) with the divergent

part of the area of the straight string with T = a, i.e. with (2.4), we see that they are

the same. This is in accord with the expectation that, at the classical level, the linearly

divergent part is proportional to the length of the Wilson loop [15]. We should also point

out that in the two cases the topologies of the worldsheet are different as well. However,

this does not matter at the classical level where only the lengths of the boundaries come

into play. To extend this comparison to 1-loop we will effectively compactify the straight

string by choosing periodic boundary conditions in that case as well.

The induced metric on the circular solution is

ds22 =
r2

a2 − r2

(

a2dr2

r2(a2 − r2)
+ dφ2

)

(4.7)

and the curvature is R(2) = −2. Since at the fluctuation level we prefer to work with the

Polyakov action in conformal gauge, let us introduce the coordinate σ so that the metric

becomes conformaly flat

adr

r
√
a2 − r2

= dσ,

ds22 =
1

sinh2 σ
(dσ2 + dτ2) (4.8)

which gives the solution in conformal gauge

r =
a

cosh σ
, z = a tanh σ, 0 ≤ σ <∞, 0 ≤ τ ≡ φ < 2π (4.9)

where we also have introduced the string coordinate τ . Note that the cutoff in z at z = ǫ

translates into a cutoff in σ at ǫ0 given by ǫ = a tanh ǫ0.
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Let us also discuss the circular Wilson loop with arbitrary winding k whose corre-

sponding string solution was discussed in [24]. It is a simple generalization of (4.9)

r =
a

cosh kσ
, z = a tanh kσ, φ = kτ, 0 ≤ τ < 2π, 0 ≤ σ <∞ (4.10)

The induced metric on this solution is

ds22 =
k2

sinh2 kσ
(dσ2 + dτ2) (4.11)

The computation of the classical action of this solution gives

S = −k
√
λ+

√
λ
ak

ǫ
(4.12)

We observe that, as in the previous cases, the linearly divergent part 1
ǫ is proportional to

the length of the Wilson loop. The Wilson loop now is a circle of radius a wrapped k-times.

Note that now σ is to be cut at ǫ0 given by ǫ = a tanh kǫ0, so that the physical cutoff

in z is always ǫ. This is different from the straight string case where z = σ and so cutoffs

in z and ǫ were the same. For the circular string, however, the two cutoffs are related but

not the same. The physical area is again independent of the radius of the circle. We will

see that the 1-loop correction is also independent of the radius a.

To this end let us also mention the boundary term obtained from the Legendre trans-

form that cancels the linearly divergent term at the classical level. Following the discussion

in (2.8) in the case of a circular string we obtain

∂L

∂(∂σz)
=
k
√
λ

2aπ

1

sinh2 kσ
=
k
√
λ

2π

a

ǫ2
, S̃ = S −

√
λ
ak

ǫ
(4.13)

This extra boundary term cancels the linearly divergent term.

5. Circular Wilson loop solution: 1-loop correction to the effective action

5.1 Winding number k = 1

Proceeding in the same way as for the straight string one can obtain the fluctuations La-

grangian near the circular Wilson loop solution. As before let us now proceed by identifying

the background metric g with the induced metric ds2 = 1
sinh2 σ

(dτ2 + dσ2). In this case

it is more convenient to use the metric in polar coordinates (4.2). Then the worldsheet

projections of the vielbein and spin connection are

eai =

(

r

z
∂iφ,

1

z
∂ir,

1

z
∂ix2,

1

z
∂ix3,

1

z
∂iz

)

(5.1)

Ω1
i4 = −1

z
∂ir, Ω0

i4 = −r
z
∂iφ, Ω0

i1 = ∂iφ, Ω2
i4 = −1

z
∂ix2, Ω3

i4 = −1

z
∂ix3 (5.2)
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On the circular solution these do no depend on the radius of the circle a. The nontrivial

covariant derivatives and mass matrices are

D0ζ
0 = ∂0ζ

0 − 1

s
ζ4 + ζ1, D1ζ

0 = ∂1ζ
0, (5.3)

D0ζ
1 = ∂0ζ

1 − ζ0, D1ζ
1 = ∂1ζ

1 +
1

c
ζ4 (5.4)

D0ζ
4 = ∂1ζ

4 +
1

s
ζ0, D1ζ

4 = ∂1ζ
4 − 1

c
ζ1 (5.5)

Xab = s2diag

(

1

s2
,

2

s2
− 1

c2
,

2

s2
,

2

s2
,

2

s2
− 1

c2s2

)

+
2s

c2
δ
(a
1 δ

b)
4 , Xpq = 0 (5.6)

where we introduced the notation s = sinhσ, c = cosh σ. As in [34] we rotate ζ1, ζ4 so that

the mass matrix becomes diagonal

X̃ab = diag(1, 1, 2, 2, 2) (5.7)

After the rotation the only non-trivial covariant derivatives are

D0ζ
0 = ∂0ζ

0 − c

s
ζ1, D1ζ

0 = ∂1ζ
0, D0ζ

1 = ∂0ζ
1 +

c

s
ζ0, D1ζ

1 = ∂1ζ
1 (5.8)

where for simplicity of notation we denoted by the same letters fluctuations before and

after rotation. The resulting bosonic fluctuation Lagrangian becomes

S =

√
λ

4π

∫

dτdσ
1

s2

[

s2(∂0ζ
A)2 + s2(∂1ζ

A)2 + 2

(

(ζ2)2 + (ζ3)2 + (ζ4)2
)

(5.9)

+(s2 + 2)((ζ0)2 + (ζ1)2) − 2sc ζ̇0ζ1 + 2sc ζ0ζ̇1

]

where A = 0, . . . , 9. As in the case of the straight string the ghost Lagrangian is coupled and

it is the same as the longitudinal fluctuations ζ0, ζ1 [12, 34]. Therefore their contributions

cancel each other in the partition function. For the remaining three decoupled transversal

modes we need to solve the following spectral problem.

Lf = Λf, L = sinh2 σ(−∂2
0 − ∂2

1) + 2 (5.10)

There are also five massless modes from S5, whose spectral problem is the same as in (5.10)

but with mass equal to zero.

Since we have a circle in τ we choose periodic boundary conditions in τ . The solutions

are of the form f(τ, σ) = eimτg(σ) wherem is an integer number. σ is in the range ǫ0 ≤ σ <

∞, and, we take Dirichlet boundary conditions on fluctuations, that is g(ǫ0) = 0, g(R) = 0.

As in the case of the straight string, for the purpose of computing the determinants, we

introduce a large R and at the end we take the limit R → ∞. This procedure effectively

introduces an extra boundary but no effects are left after taking the R→ ∞ limit.9 We also

introduce a small cutoff ǫ0 to keep track of the divergencies at the boundary of AdS. As we

9If we choose instead the background metric gij to be flat, at least naively, effects from the un-physical

boundary at σ = R seem to remain.
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already mentioned, we denote the physical cutoff for z to be ǫ. Then ǫ = a tanh ǫ0. In what

follows we absorb the radius a into ǫ as a enters the 1-loop correction only through ǫ. Since,

as we will see, the physical 1-loop result is independent of ǫ it means it is independent of

a too. This is indeed expected at all orders in loop expansion. For the particular situation

with m = 0 we take Neumann boundary conditions at R and Dirichlet at σ = ǫ0. The

determinant of the operator L can be written as

detL =

∞
∏

m=−∞
det

(

sinh2 σ(−∂2
1 +m2) + 2

)

(5.11)

Before dealing with this determinant let us move on to the fermionic part.

Let us now consider the fermionic Lagrangian for the circular string solution with gij
being the induced metric. In this case it is more convenient to use the metric in polar

coordinates (4.2). For convenience we choose the vielbiens and spin connection as given

in (5.1), (5.2).

Note that these were obtained from the corresponding cartesian ones (3.7) by per-

forming an angle φ rotation both, in the space-time indices µ and in the tangent space

indices A. As a consequence, the fermions become antiperiodic. Alternatively, we could

try to work with cartesian vielbiens and periodic fermions. However, the Lagrangian will

be explicitely φ = τ dependent. After doing a τ rotation to get rid of the τ dependence

we arrive at the same fermionic Lagrangian (5.18), as below with antiperiodic fermions.

The anti-periodicity of the fermions implies that the quantum number in the τ direction

is half-integer. We denote half-integer numbers by r, while reserving n,m for integers.

For the circular loop solution we obtain

ρ0 =
1

sinhσ
Γ0, ρ1 = − 1

coshσ
Γ1 +

1

sinhσ coshσ
Γ4 (5.12)

∇0 = ∂0 +
1

2
Γ01 −

1

2 sinhσ
Γ04, ∇1 = ∂1 +

1

2 cosh σ
Γ14 (5.13)

Note that the radius of the circle cancels out in the vielbein and spin connection. These

expressions can be simplified further if we consider the following rotation

θ = e−
p

2
Γ1Γ4Ψ, cos p =

1

coshσ
, sin p = − tanhσ (5.14)

Applying this rotation we obtain

ρ0 =
1

sinhσ
Γ0, ρ1 =

1

sinhσ
Γ4 (5.15)

∇0 = ∂0 −
1

2
coth σΓ0Γ4, ∇1 = ∂1 (5.16)

The fermionic Lagrangian becomes

L2F = −2i
√
gΨ̄DFΨ (5.17)

where

DF = − sinhσΓ0∂0 + sinhσΓ4∂1 −
1

2
coshσΓ4 + iΓ0Γ4 (5.18)
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For small σ, namely near the boundary, this operator is the same as the corresponding

operator for the straight string, as expected. Using again the same representation for the

gamma matrices as for the straight string, we obtain the spectral problem for the fermions

LF θ = Λθ (5.19)

where

LF = −∇i∇i +
R(2)

4
+ 1 = sinh2 σ(−∂2

1 + r2) +
3

4
+

sinh2 σ

4
+ Γ04r coshσ sinhσ (5.20)

and we have introduced the τ dependent part ∼ eirτ . Let us recall that r is a half-integer

number.

Putting together the bosons and fermions one ends up with the following partition

function [12]

Z =
det8/2(−∇2 + R(2)

4 + 1)

det3/2(−∇2 + 2)det5/2(−∇2)
(5.21)

This has the same form as the partition function for the straight string. However, the

induced metric is different so the spectral problems are actually different. But, for small

σ, the partition functions for the straight and the circular solutions are the same, as

the fluctuation Lagrangians coincide in that limit. Thus, we expect that, with the same

boundary conditions, the 1
ǫ terms, which are the dominant terms in the small σ limit, are

the same in the two cases. We see below that this is indeed the case, which suggests that we

should subtract the results in the two cases in order to cancel the 1
ǫ divergency. Explicitly

in the circular string case the partition function is

Z =

∏

r∈Z+ 1
2

det4/2[s2(−∂2
1 + r2) + 3

4 + s2

4 + rs c] det4/2[s2(−∂2
1 + r2) + 3

4 + s2

4 − rs c]
∏

m∈Z
det3/2[s2(−∂2

1 +m2) + 2] det5/2[s2(−∂2
1 +m2)]

(5.22)

As in the case of the straight string the factor s2 can be scaled away when computing the

above ratios of determinants since the initial value problems are the same. The inconve-

nience we face here is that the bosonic sum/product is over integers while the fermionic

one is over half integers. Let us rewrite the fermionic products as products over integers

by performing shifts in the summation indices. As in [35] we perform these shifts in a

‘supersymmetric way’. In order to work with finite quantities let us consider the ratio of

the fermionic determinants by det(−∂2
1). Consider then

∑

r∈Z+ 1
2

ωr =
∑

r∈Z+ 1
2

ln
det(−∂2

1 + r2 + 1
4 + 3

4 sinh2 σ
+ r cothσ)

det(−∂2
1)

(5.23)

The fermionic determinants that we need to compute can be regularized by introducing a

suppressing exponential factor:

∑

r∈Z+ 1
2

ωr +
∑

r∈Z+ 1
2

ω−r →
∑

r∈Z+ 1
2

e−µ|r|ωr +
∑

r∈Z+ 1
2

e−µ|r|ω−r (5.24)
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Considering the shifts r = m− 1
2 in the first sum and r = m+ 1

2 in the second sum, with

m ∈ Z, we obtain for the above sum

∑

r∈Z+ 1
2

ωr +
∑

r∈Z+ 1
2

ω−r =
∑

m∈Z

e−µ|m|(ωm− 1
2

+ ω−m− 1
2
) +

∑

m∈Z

ωm− 1
2
(e−µ|m− 1

2
| − e−µ|m|)

+
∑

m∈Z

ω−m− 1
2
(e−µ|m+ 1

2
| − e−µ|m|) (5.25)

We take the limit µ → 0. The sums in the second line above can be evaluated giving a

finite result. The sum in the first line is divergent but its divergency is the same as the

original sum. The sum in the second line is even in m and taking the µ→ 0 limit we obtain

∑

r∈Z+ 1
2

ωr +
∑

r∈Z+ 1
2

ω−r =
∑

m∈Z

(ωm− 1
2

+ ω−m− 1
2
) + µ

∞
∑

m=1

e−µm(ωm− 1
2
− ω−m− 1

2
) (5.26)

To evaluate the second sum in the above expression we need the ratio of ωm− 1
2

and ω−m− 1
2
.

Let us compute them with the determinant ratio method employed in this paper. We need

the initial value solution for the equation

[

− ∂2
1 + r2 +

1

4
+

3

4 sinh2 σ
+ r coth σ

]

θ = 0, θ(ǫ) = 0, θ′(ǫ) = 1 (5.27)

The solution is

θ(σ) =
1

4r2 − 1

1√
sinh ǫ0

[

(2r tanhσ − 1)
cosh σ√
sinhσ

er(σ−ǫ0)+(1−2r tanh ǫ0)
cosh ǫ0√
sinhσ

e−r(σ−ǫ0)

]

(5.28)

For the free operator we need

(−∂2
1)f = 0, f(ǫ) = 0, f ′(ǫ) = 1 (5.29)

with solution

f(σ) = σ − ǫ (5.30)

Taking the solutions in the large σ limit we obtain the ratios of determinants needed

in (5.26)

ωm− 1
2

= ln
1

2m
√

2 sinh ǫ0

emR

R
e−(m− 1

2
)ǫ0 (5.31)

ω−m− 1
2

= ln
1

2m
√

2 sinh ǫ0

1 + (2m+ 1) tanh ǫ0
m+ 1

cosh ǫ0
emR

R
e−(m+ 1

2
)ǫ0 (5.32)

Using the relation between ǫ and ǫ0, after performing the second sum in (5.26) we obtain

the cutoff independent result

∑

r∈Z+ 1
2

ωr +
∑

r∈Z+ 1
2

ω−r =
∑

m∈Z

(ωm− 1
2

+ ω−m− 1
2
) + ln

1 + ǫ

2ǫ
(5.33)
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where the last term is to be expanded in small ǫ. We therefore conclude that the sum over

half-integers in the fermionic determinants is transformed in a sum over integer as

∏

r∈Z+ 1
2

det[−∂2
1 + r2 + 3

4s2
+ 1

4 + r cs ]

det[−∂2
1 ]

det[−∂2
1 + r2 + 3

4s2
+ 1

4 − r cs ]

det[−∂2
1 ]

=
1

2ǫ

∏

m∈Z

det[−∂2
1 + (m− 1

2 )2 + 3
4s2

+ 1
4 + (m− 1

2) cs ]

det[−∂2
1 ]

× (5.34)

×det[−∂2
1 + (m+ 1

2)2 + 3
4s2

+ 1
4 − (m+ 1

2) cs ]

det[−∂2
1 ]

The 1-loop effective action can therefore be written as

Γ1 =
1

2
(4 ln 2 + 4 ln ǫ+

∞
∑

m=−∞
lnPm) (5.35)

where

Pm =

[

det
[

− ∂2
1 +m2 + 2

s2

]

]3

[

det
[

− ∂2
1 + (m− 1

2 )2 + 1
4 + 3

4s2
+ (m− 1

2) cs

]4 ×

×

[

det
[

− ∂2
1 +m2

]

]5

[

det
[

− ∂2
1 + (m+ 1

2)2 + 1
4 + 3

4s2
− (m+ 1

2) cs

]4 (5.36)

Note that the symmetry under m → −m is preserved by the supersymmetric shifts per-

formed, so we can restrict ourselves to m > 0.

We now compute the ratio of determinants. Let us focus first in the case with m 6= 0.

The initial value problem for the transverse bosons that we need is

−g′′ +
(

m2 +
2

sinh2 σ

)

g = 0 (5.37)

with the initial conditions

g(ǫ0) = 0, g(ǫ0) = 1 (5.38)

The initial value solution is

g(σ) =
1

2m(m2 − 1)

[

(m+coth ǫ0)(m−coth σ)em(σ−ǫ0)−(m−coth ǫ0)(m+coth σ)e−m(σ−ǫ0)

]

(5.39)

This is valid for m 6= 1. For m = 1 the solution is

g(σ) = −1

4

1

sinh ǫ0 sinhσ
(2(σ − ǫ0) + sinh 2ǫ0 − sinh 2σ) (5.40)
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We also need the solution for the free massive bosons

−g′′ +m2g = 0, g(ǫ0) = 0, g(ǫ0) = 1 (5.41)

with solution

g(σ) =
1

m
sinh(m(σ − ǫ0)) (5.42)

For the fermionic operators we already wrote the solution above. The ratios of determinants

needed are (for m 6= 0)

det[−∂2
1 +m2 + 2

sinh2 σ
]

det[−∂2
1 + (m− 1

2)2 + 1
4 + 3

4 sinh2 σ
+ (m− 1

2) coth σ]
=

√

2 sinh ǫ0
m+ coth ǫ0
m+ 1

e−
ǫ0
2 ,

det[−∂2
1 +m2]

det[−∂2
1 + (m− 1

2)2 + 1
4 + 3

4 sinh2 σ
+ (m− 1

2) coth σ]
=

√

2 sinh ǫ0e
− ǫ0

2 ,

det[−∂2
1 +m2]

det[−∂2
1 + (m+ 1

2)2 + 1
4 + 3

4 sinh2 σ
− (m+ 1

2) coth σ]
=

√
2 sinh ǫ0
cosh ǫ0

m+ 1

1 + (2m+ 1) tanh ǫ0
e

ǫ0
2

Changing ǫ0 to ǫ and putting these ratios together we obtain

Pm =
(m+ 1

ǫ )
3(m+ 1)

(m+ 1
2 + 1

2ǫ)
4

(5.43)

It is a nontrivial check that this result is independent of the regulator R. This had to

be the case since we introduced a non-physical boundary at σ = R just to regulate the

determinants. We observe that, as expected, the series does not converge; there is a

logarithmic divergence which as we will see below is proportional to the volume part of the

Euler characteristic, and the coefficient is the same as in the case of a straight string. Since

the sum is divergent we introduce a large cutoff Λ. Before doing that let us also compute

the ratios of determinants for m = 0.

As we discussed already, for m = 0 we take Neumann boundary conditions in σ at

σ = R. For the transversal modes we need
(

− ∂2
1 +

2

sinh2 σ

)

g = 0, g(ǫ0) = 0, g′(ǫ0) = 1 (5.44)

with solution

g(σ) = coth σ + coth ǫ0[(σ − ǫ0) coth σ − 1] (5.45)

For large σ this becomes simple

g = σ coth ǫ0, g′ = coth ǫ0 (5.46)

For the fermions we need to solve
(

− ∂2
1 +

1

2
+

3

4 sinh2 σ
− 1

2
coth σ

)

θ = 0, θ(ǫ0) = 0, θ′(ǫ0) = 1 (5.47)

The solution is

θ(σ) = −1

2

√

1 − coth ǫ0
√

1 − coth σ[e(σ+ǫ0)(σ − ǫ0) + sinh(ǫ0 − σ)] (5.48)
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which in the large σ limit becomes

θ = σ
e

ǫ0
2√

2 sinh ǫ0
, θ′ =

e
ǫ0
2√

2 sinh ǫ0
(5.49)

Note that none of the derivatives of the above solutions vanish at ǫ0 = 0, so there are no

zero modes present. Taking the derivatives of these function at large σ as appropriate for

Neumann boundary conditions (see appendix A) we obtain

P0 =
16ǫ

(1 + ǫ)4
⇒ lnP0 ≃ 4 ln 2 + ln ǫ, (ǫ→ 0) (5.50)

where we have expanded in small ǫ. We observe that this is in fact the same as Pm
from (5.43) with m = 0.

Let us plug (5.43) into (5.35) and express the sum in terms of gamma functions in-

troducing again a dimensionless cutoff Λ in the summation indexes m. We obtain the

result

Γ1 =
1

ǫ
(1 + ln

ǫ

4
) +

1

ǫ
ln Λ − lnΛ +

1

2
ln(2π) (5.51)

Having in view the volume part of the Euler number (here a is absorbed in ǫ)

χv =
1

4π

∫ 2π

0
dτ

∫ ∞

ǫ0

dσ
−2

sinh2 σ
= 1 − coth ǫ0 = 1 − 1

ǫ
(5.52)

Again, the UV divergent part in the 1-loop effective action is proportional to the volume

part of the Euler characteristic, Γ1 → −χv ln Λ, with precisely the same coefficient in

front as in the case of a straight string. This is of course expected for the consistency

of the method. For any Wilson loop solution, working with the induced metric and with

genuine 2d fermions, one should obtain the same UV divergency factor form the 1-loop

fluctuation determinants. As in the case of the straight string, the proper regularization

should complete the Euler number in the UV divergency, which of course should be canceled

by a corresponding factor from the measure. Any such completion of the Euler number

with a boundary term goes like 1
ǫ , thus no finite part can remain.

For completeness let us restore the radius of the circle ǫ → ǫ
a , so that 1-loop effective

action becomes

Γ1 =
a

ǫ
(1 + ln

ǫ

4a
) +

1

2
ln(2π) (5.53)

As expected, the finite part of the 1-loop effective action is independent of the radius

of the circle. The (ǫ → 0) divergent part is the same as the one for a straight string of

length T = a. If we subtract both the result is finite:

Γ1 =
1

2
ln(2π) (5.54)

In addition to the part of 1-loop effective action computed above, there is a contributing

numerical factor from the normalization of the zero modes. As pointed out in [4], in the
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case of a disk there are three normalizable zero modes.10 The contribution from the nor-

malization of zero modes has the form cλ−3/4. The precise numerical factor c is ambiguous.

Assuming, for the moment, that c = 1, we observe that the result in (5.53) and the gauge

theory expectation (1.2) differ by ln 2. Equivalently the partition function that we obtain

is half of the expected partition function from gauge theory, i.e. Z = 1
2 < W >. To have

< W >= Z, as predicted by AdS/CFT , one needs to have c = 2. It would be interesting

to obtain this factor c in the string partition function.

5.2 Arbitrary winding number k

Let us now generalize the above discussion for the string solution with arbitrary winding

k. The extension is straightforward, and the fluctuation Lagrangian becomes

S =

√
λ

4π

∫

dτdσ
1

s2

[

s2(∂0ζ
A)2 + s2(∂1ζ

A)2 + 2k2

(

(ζ2)2 + (ζ3)2 + (ζ4)2
)

(5.55)

+k2(s2 + 2)((ζ0)2 + (ζ1)2) − 2k s c ζ̇0ζ1 + 2k s c ζ0ζ̇1

]

where now s = sinh kσ, c = cosh kσ. As in the k = 1 case one can show that the ghost and

longitudinal modes Lagrangians are the same, so their contributions cancel in the partition

function. For the fermions we find that the relevant quadratic fermionic operator is

D2
F = sinh2 kσ(−∂2

1 + r2) +
3k2

4
+
k2

4
sinh2 kσ + Γ04rk cosh kσ sinh kσ (5.56)

The shifts that we do to transform the summation over half-integer into integer summation

are r = m− k
2 and r = m+ k

2 in the two sums in (5.24). Proceeding like in the k = 1 case

we obtain a factor of ( 1
2ǫ)

k in an expression similar to (5.34).

For the transverse bosons we need the initial value solution for the equation

−g′′ +
(

m2 +
2k2

sinh2 kσ

)

g = 0 (5.57)

with solution for m 6= k

g(σ) =
1

2m(m2 − k2)

[

(m+ k coth kǫ0)(m− k coth kσ)em(σ−ǫ0)

−(m− k coth kǫ0)(m+ k coth kσ)e−m(σ−ǫ0)

]

(5.58)

while the solution for m = k is

g(σ) = − 1

4k

1

sinh kǫ0 sinh kσ
[2k(σ − ǫ0) + sinh 2kǫ0 − sinh 2kσ] (5.59)

For the fermionic operator we need
[

− ∂2
1 + r2 +

k2

4
+

3k2

4 sinh2 kσ
+ rk coth kσ

]

θ = 0, (5.60)

10The three zero modes come from the residual SL(2, R) symmetry after fixing the metric to be the

induced metric. There are no Teichmuller parameters for a disk. The group SL(2, R) is noncompact, so its

volume, which appears in the measure, should be regularized as in [30, 29].
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The solution is

θ(σ) =
1

4r2 − k2

1√
sinh kǫ0

[

(2r tanh kσ − k)
cosh kσ√
sinh kσ

er(σ−ǫ0)

+(k − 2r tanh kǫ0)
cosh kǫ0√
sinh kσ

e−r(σ−ǫ0)

]

(5.61)

Computing the relevant determinants we obtain

det[−∂2
1 +m2 + 2k2

sinh2 kσ
]

det[−∂2
1 + (m− k

2 )2 + k2

4 + 3k2

4 sinh2 kσ
+ (m− k

2 )k coth kσ]
= (5.62)

=
√

2 sinh kǫ0
m+ k coth kǫ0

m+ k
e−

kǫ0
2 ,

det[−∂2
1 +m2]

det[−∂2
1 + (m− k

2 )2 + k2

4 + 3k2

4 sinh2 kσ
+ (m− k

2 )k coth kσ]
= (5.63)

=
√

2 sinh kǫ0e
−k ǫ0

2 ,

det[−∂2
1 +m2]

det[−∂2
1 + (m+ k

2 )2 + 1
4 + 3

4 sinh2 kσ
− (m+ k

2 ) coth kσ]
= (5.64)

=

√
2 sinh kǫ0
cosh kǫ0

m+ k

k + (2m+ k) tanh kǫ0
e

kǫ0
2

Note that these ratios of determinants are precisely those at k = 1 with the rescaling

m → m
k . This is expected since the solution with arbitrary k can be transformed to the

one with k = 1 with rescaling of coordinates τ → τ
k , σ → σ

k . At the level of the classical

action the effect of this rescaling is a factor of k, as we have seen, but at 1-loop level this

is no longer true even at large k.

Putting all together the 1-loop effective action is

Γ1 =
1

2

(

4k ln 2 + 4k ln ǫ+ 4 ln 2 + ln ǫ+ 2
∞

∑

m=1

lnPm

)

(5.65)

where the first two terms come from the r-shifting while the next two from P0. Also, Pm
now is

Pm =
(m+ k

ǫ )
3(m+ k)

(m+ k
2 + k

2ǫ)
4

(5.66)

Doing the sum with a cutoff Λ we obtain (we also restore the radius of the circle)

Γ1 =
ak

ǫ

(

1 + ln
ǫ

4ak

)

− χv ln Λ +
1

2
[ln(2π) + (4k + 1) ln k − 2 ln Γ(1 + k)] (5.67)

Here again the UV divergent part is proportional to the volume part of the Euler number

(here χv is proportional to k), and it should be canceled by the measure. The ln ǫ divergen-

cies (not 1
ǫ ln ǫ) cancel by themselves non-trivially. To get rid of the remaining 1

ǫ divergency

we again subtract the straight string now with length T = ak. As mentioned before we cut

a small region at the center of the disk where the induced metric is singular. We do not

– 25 –



J
H
E
P
0
5
(
2
0
0
8
)
0
6
4

expect this to introduce any problems but more analysis is needed to be completely sure

that the result is compatible or incompatible with the field theory prediction.

Let us finish this section by considering the finite result (5.67) for large k

Γ1 = k ln k + k +O(
1

k
) (5.68)

The same result can be obtained if one uses the Euler-Maclaurin formula that transforms

the sum into an integral plus a remaining sum. For large k this can be viewed as a

decompactifying limit of the solution with k = 1. After performing the above rescalings of

τ and σ, the new τ runs from 0 to 2πk, which is a large interval for large k. In contrast to

the situation in [11, 25] where no IR divergencies were present, and in the decompactifying

limit the volume factorizes also at 1-loop, in our case this is not true as we obtain the result

in (5.68) at large k.
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A. Ratio of determinants of second-order differential operators

In this appendix we briefly review the method of computing the ratio of determinants that

we employ in this paper. Let us consider the following second-order differential operators

defined on an interval σ ∈ [a, b]

L = −P0(σ)
d2

dσ2
+ P1(σ)

d

dσ
+ P2(σ), L̂ = −P0(σ)

d2

dσ2
+ P̂1(σ)

d

dσ
+ P̂2(σ) (A.1)

Note that for what follows it is important that the functions multiplying the second deriva-

tives are the same for the two operators. In what follows the inner product of eigenfunc-

tions is defined with trivial measure11 on σ. Assuming Dirichlet boundary conditions at

the boundary, it was shown in [36] (see also [19] for a review) that the ratio of determinants

of these operators is

detL

detL̂
=
e−

1
2

R b

a
dσP1(σ)P−1

0 (σ)

e−
1
2

R b

a
dσP̂1(σ)P−1

0 (σ)

ψ(b)

ψ̂(b)
(A.2)

where ψ and ψ̂ are solutions of the initial value problems

Lψ = 0, L̂ψ̂ = 0, ψ(a) = ψ̂(a) = 0, ψ′(a) = ψ̂′(a) = 1 (A.3)

11In our case of interest in this paper the norm of fluctuations is not trivial. However, as we integrate

over fluctuations we can put this norm back into the trivial form by introducing a local determinant. This

local determinant does not change the finite part of the result, so we will ignore such determinants.
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This formula is valid when the operators L and L̂ do not have zero modes. If zero modes

are present one needs corrections as shown in [19]. Also, this formula can be generalized for

any boundary conditions and for systems of differential operators [18, 37, 19]. In particular

if one needs Dirichlet boundary conditions at σ = a but Neumann boundary conditions at

σ = b one needs to replace the functions by their derivatives in the right hand side in (A.2),

i.e. ψ′(b)

ψ̂′(b)
.

The particular case of interest to us is when P1(σ) = P̂1(σ) = 0. Let us further focus

on this situation as this is the type of operators we are interested in. Then (A.2) reduces

to

detL

detL̂
=
ψ(b)

ψ̂(b)
(A.4)

This formula (A.4) for computing ratio of determinants is valid for intervals [a, b] in which

the function P0 does not vanish at any point. This is indeed the case considered in this paper

for the interval [ǫ,R]. However, for ǫ equals zero, P0 in our case (P0 = σ2 or P0 = sinh2 σ)

does vanish. For that reason we always take ǫ small but non-zero. The divergences that

appear in the limit ǫ→ 0 are then treated by subtracting a reference solution which in this

case is the straight string. This is the same as is done for the classical area which is also

divergent when ǫ→ 0.

Let us observe that the initial problem solutions ψ and ψ̂ are also solutions for the

rescaled operators

L = − d2

dσ2
+
P2(σ)

P0(σ)
, L̂ = − d2

dσ2
+
P̂2(σ)

P0(σ)
(A.5)

Therefore, the ratio of rescaled and initial operators is the same

detL

detL̂
=

detL

detL̂
=
ψ(b)

ˆψ(b)
(A.6)

This is the formula that we used to find the ratio between the determinants of bosonic and

fermionic operators. Again this relationship does not include any boundary term that may

arise at ǫ = 0.

In the reminder of this appendix we check that the ratio of determinants obtained by

the method described above is the same as the ratio computed in the standard way. This

comparison can be carried out explicitly for the constant masses determinants where one

can compute the spectrum exactly. Let us consider computing the ratio

K =
det[−∂2

1 + ω2]

det[−∂2
1 ]

(A.7)

we take Dirichlet boundary conditions in σ with σ ∈ [0, R]. First let us compute K with

the method used in this paper

K =
χ(R)

χ0(R)
(A.8)

where χ and χ0 satisfy the initial value problem

χ(0) = 0, χ′(0) = 1, χ0(0) = 1, χ′
0(0) = 1 (A.9)
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The solutions are

χ =
1

ω
sinhωσ, χ0 = σ (A.10)

Therefore we obtain (after taking a ln which is usually what one needs)

lnK = ln
sinh(ωR)

ωR
(A.11)

This simple computation works for any finite R. In the large R limit one obtains

lnK = ωR− ln(ωR) ∼ ωR (A.12)

Let us now compute the same ratio but with the usual method. The spectrum of the

operator

(−∂2
1 + ω)ψ = λψ (A.13)

is given by λn = ω2 + π2n2

R2 where n = 1, 2, 3 . . .. Then the computation of the determinant

is therefore given by

det[−∂2
1 + ω2] =

∞
∏

n=1

(

ω2 +
π2n2

R2

)

(A.14)

Taking again also the same determinant for ω = 0 we obtain

ln
det[−∂2

1 + ω2]

det[−∂2
1 ]

=

∞
∑

n=1

[

ln

(

ω2 +
π2n2

R2

)

− ln
π2n2

R2

]

(A.15)

One can compute this sum taking a derivative in respect to ω and the integrating back

after doing the sum and the result is

lnK = ln
sinh(ωR)

ωR
(A.16)

We see that the result is the same as the one obtained before by the method of wave-

functions. The advantage of the latter method is that it does not require knowing all

eigenvalues but only the solution of the initial value problem, which one can often obtain

even for complicated potentials.

Let us look at what happens directly when the interval is infinite, i.e. σ ∈ [0,∞). In

this case the spectrum of the operator

(−∂2
1 + ω2)ψ = λψ (A.17)

is continuous λ = ω2 + k2, where k > 0 is a continuous parameter. Here we have Dirichlet

boundary condition only at x = 0. One needs then to compute

lnK = ln
∏

k>0

k2 + ω2

k2
(A.18)

where the product is over the continuum values of k > 0. To define this product ones takes

the discrete version introducing a finite volume, and then converts the resulting sum into

an integral. Therefore

lnK = ln
∏

k>0

k2 + ω2

k2
=
R

π

∫ ∞

0
dk ln

k2 + ω2

k2
= Rω (A.19)
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where the above result is valid for large R. This is of course exactly what one obtains

taking large R limit in (A.16), or in (A.12).

In this appendix we showed that the ratio of the above determinants for free massive

operators is the same if computed by the usual method or by the wavefunction method

for any R. Whether in the strict R → ∞ limit the result makes or not sense is another

matter. In the strict limit the ratio of determinants considered above appears to diverge

even though none of the operators has zero eigenvalues. Therefore, in general one needs to

consider the ratio of determinants in the strict R→ ∞ with caution. The result to be fully

trusted is for the ratios of determinants which are finite (not zero) in the R → ∞ limit.

This is the case in this paper for the straight and circular Wilson loop string solutions where

the results are R-independent for large R. Another situation where the R dependence goes

away from the ratio of two determinants was considered in [19].
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